A - Papers appearing in refereed journals
Pringle, S., Dallimer, M., Goddard, M. A., Goff, L. K. L., Hart, E., Langdale, S. J., Fisher, J. C., Abad, S., Ancrenaz, M., Cheein, F. A. F. A., Austen, G. E., Bailey, J. J., Baldock, K. C., Banin, L. F., Banks-Leite, C., Barau, A. S., Bashyal, R., Bates, A. J., Bicknell, J. E., Bielby, J., Bosilj, P., Bush, E. R., Butler, S. J., Carpenter, D., Clements, C. F., Cully, A., Davies, K. F., Deere, N. J., Dodd, M., Drinkwater, R., Driscoll, D. A., Dutilleux, G., Dyrmann, M., Edwards, D. P., Farhadinia, M. S., Faruk, A., Field, R., Fletcher, R. J., Foster, C. W., Fox, R., Francksen, R. M., Franco, A. M., Gainsbury, A. M., Gardner, C. J., Giorgi, I., Griffiths, R. A., Hamaza, S., Hanheide, M., Hayward, M. W., Hedblom, M., Helgason, T., Heon, S. P., Hughes, K. A., Hunt, E. R., Ingram, D. J., Jackson-Mills, G., Jowett, K., Keitt, T. H., Kloepper, L. N., Kramer-Schadt, S., Labisko, J., Labrosse, F., Lawson, J., Lecomte, N., Lima, R. F. D., Littlewood, N. A., Marshall, H. H., Masala, G. L., Maskell, L. C., Matechou, E., Mazzolai, B., McConnell, A., Melbourne, B. A., Miriyev, A., Nana, E. D., Ossola, A., Papworth, S., Parr, C. L., Payo-Payo, A., Perry, G., Pettorelli, N., Pillay, R., Potts, S. G., Prendergast-Miller, M. T., Qie, L., Rolley-Parnell, P., Rossiter, S. J., Rowcliffe, M., Rumble, H., Sadler, J. P., Sandom, C. J., Sanyal, A., Schrodt, F., Sethi, S. S., Shabrani80, A., Siddall, R., Smith, S. C., Snep, R. P., Soulsbury, C. D., Stanley, M. C., Stephens, P. A., Stephenson, P. J., Struebig, M. J., Studley, M., Svatek, M., Tang, G., Taylor, N. K., Umbers, K. D., Ward, R. J., White, P. J. C., Whittingham, M. J., Wich, S., Williams, C. D., Yakubu, I. B., Yoh, N., Zaidi, S. A. R., Zmarz, A., Davies, J. A. Z. and Davies, Z. G. 2025. Identifying the opportunities and challenges for monitoring terrestrial biodiversity in the robotics age. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-025-02704-9
Authors | Pringle, S., Dallimer, M., Goddard, M. A., Goff, L. K. L., Hart, E., Langdale, S. J., Fisher, J. C., Abad, S., Ancrenaz, M., Cheein, F. A. F. A., Austen, G. E., Bailey, J. J., Baldock, K. C., Banin, L. F., Banks-Leite, C., Barau, A. S., Bashyal, R., Bates, A. J., Bicknell, J. E., Bielby, J., Bosilj, P., Bush, E. R., Butler, S. J., Carpenter, D., Clements, C. F., Cully, A., Davies, K. F., Deere, N. J., Dodd, M., Drinkwater, R., Driscoll, D. A., Dutilleux, G., Dyrmann, M., Edwards, D. P., Farhadinia, M. S., Faruk, A., Field, R., Fletcher, R. J., Foster, C. W., Fox, R., Francksen, R. M., Franco, A. M., Gainsbury, A. M., Gardner, C. J., Giorgi, I., Griffiths, R. A., Hamaza, S., Hanheide, M., Hayward, M. W., Hedblom, M., Helgason, T., Heon, S. P., Hughes, K. A., Hunt, E. R., Ingram, D. J., Jackson-Mills, G., Jowett, K., Keitt, T. H., Kloepper, L. N., Kramer-Schadt, S., Labisko, J., Labrosse, F., Lawson, J., Lecomte, N., Lima, R. F. D., Littlewood, N. A., Marshall, H. H., Masala, G. L., Maskell, L. C., Matechou, E., Mazzolai, B., McConnell, A., Melbourne, B. A., Miriyev, A., Nana, E. D., Ossola, A., Papworth, S., Parr, C. L., Payo-Payo, A., Perry, G., Pettorelli, N., Pillay, R., Potts, S. G., Prendergast-Miller, M. T., Qie, L., Rolley-Parnell, P., Rossiter, S. J., Rowcliffe, M., Rumble, H., Sadler, J. P., Sandom, C. J., Sanyal, A., Schrodt, F., Sethi, S. S., Shabrani80, A., Siddall, R., Smith, S. C., Snep, R. P., Soulsbury, C. D., Stanley, M. C., Stephens, P. A., Stephenson, P. J., Struebig, M. J., Studley, M., Svatek, M., Tang, G., Taylor, N. K., Umbers, K. D., Ward, R. J., White, P. J. C., Whittingham, M. J., Wich, S., Williams, C. D., Yakubu, I. B., Yoh, N., Zaidi, S. A. R., Zmarz, A., Davies, J. A. Z. and Davies, Z. G. |
---|---|
Abstract | With biodiversity loss escalating globally, a step-change is needed in our capacity to accurately monitor species populations across ecosystems. Robotic and autonomous systems (RAS) offer technological solutions that may significantly advance terrestrial biodiversity monitoring, but this potential is yet to be considered systematically. We used a modified Delphi technique to synthesise knowledge from 98 biodiversity and 31 RAS experts from around the world, identifying the major methodological barriers that currently hinder monitoring, and exploring the opportunities and challenges that RAS offer to overcome these barriers. Biodiversity experts identified four barrier categories: site access, species/individual identification, data handling/storage and power/network availability. RAS experts highlighted currently available technologies and capabilities that could overcome these barriers. Some existing RAS could be optimised relatively easily to survey species, but would require development to monitor more ‘difficult’ taxa and be robust enough to work in the uncontrolled, and often extreme, conditions within ecosystems. Other nascent technologies (e.g., novel sensors, biodegradable robots) need accelerated research. Overall, it was felt that RAS could lead to major progress in monitoring terrestrial biodiversity by supplementing, rather than supplanting, existing methods. Transdisciplinarity needs to be fostered between biodiversity and RAS experts, so future ideas and technologies can be co-developed effectively. |
Year of Publication | 2025 |
Journal | Nature Ecology & Evolution |
Digital Object Identifier (DOI) | https://doi.org/10.1038/s41559-025-02704-9 |
Open access | Published as ‘gold’ (paid) open access |
Publisher's version | Copyright license CC BY |
Output status | Published |
Publication dates | |
Online | 22 May 2025 |
Publisher | Nature Publishing Group |
ISSN | 2397-334X |
Permalink - https://repository.rothamsted.ac.uk/item/993qx/identifying-the-opportunities-and-challenges-for-monitoring-terrestrial-biodiversity-in-the-robotics-age