Identifying the opportunities and challenges for monitoring terrestrial biodiversity in the robotics age

A - Papers appearing in refereed journals

Pringle, S., Dallimer, M., Goddard, M. A., Goff, L. K. L., Hart, E., Langdale, S. J., Fisher, J. C., Abad, S., Ancrenaz, M., Cheein, F. A. F. A., Austen, G. E., Bailey, J. J., Baldock, K. C., Banin, L. F., Banks-Leite, C., Barau, A. S., Bashyal, R., Bates, A. J., Bicknell, J. E., Bielby, J., Bosilj, P., Bush, E. R., Butler, S. J., Carpenter, D., Clements, C. F., Cully, A., Davies, K. F., Deere, N. J., Dodd, M., Drinkwater, R., Driscoll, D. A., Dutilleux, G., Dyrmann, M., Edwards, D. P., Farhadinia, M. S., Faruk, A., Field, R., Fletcher, R. J., Foster, C. W., Fox, R., Francksen, R. M., Franco, A. M., Gainsbury, A. M., Gardner, C. J., Giorgi, I., Griffiths, R. A., Hamaza, S., Hanheide, M., Hayward, M. W., Hedblom, M., Helgason, T., Heon, S. P., Hughes, K. A., Hunt, E. R., Ingram, D. J., Jackson-Mills, G., Jowett, K., Keitt, T. H., Kloepper, L. N., Kramer-Schadt, S., Labisko, J., Labrosse, F., Lawson, J., Lecomte, N., Lima, R. F. D., Littlewood, N. A., Marshall, H. H., Masala, G. L., Maskell, L. C., Matechou, E., Mazzolai, B., McConnell, A., Melbourne, B. A., Miriyev, A., Nana, E. D., Ossola, A., Papworth, S., Parr, C. L., Payo-Payo, A., Perry, G., Pettorelli, N., Pillay, R., Potts, S. G., Prendergast-Miller, M. T., Qie, L., Rolley-Parnell, P., Rossiter, S. J., Rowcliffe, M., Rumble, H., Sadler, J. P., Sandom, C. J., Sanyal, A., Schrodt, F., Sethi, S. S., Shabrani80, A., Siddall, R., Smith, S. C., Snep, R. P., Soulsbury, C. D., Stanley, M. C., Stephens, P. A., Stephenson, P. J., Struebig, M. J., Studley, M., Svatek, M., Tang, G., Taylor, N. K., Umbers, K. D., Ward, R. J., White, P. J. C., Whittingham, M. J., Wich, S., Williams, C. D., Yakubu, I. B., Yoh, N., Zaidi, S. A. R., Zmarz, A., Davies, J. A. Z. and Davies, Z. G. 2025. Identifying the opportunities and challenges for monitoring terrestrial biodiversity in the robotics age. Nature Ecology & Evolution. https://doi.org/10.1038/s41559-025-02704-9

AuthorsPringle, S., Dallimer, M., Goddard, M. A., Goff, L. K. L., Hart, E., Langdale, S. J., Fisher, J. C., Abad, S., Ancrenaz, M., Cheein, F. A. F. A., Austen, G. E., Bailey, J. J., Baldock, K. C., Banin, L. F., Banks-Leite, C., Barau, A. S., Bashyal, R., Bates, A. J., Bicknell, J. E., Bielby, J., Bosilj, P., Bush, E. R., Butler, S. J., Carpenter, D., Clements, C. F., Cully, A., Davies, K. F., Deere, N. J., Dodd, M., Drinkwater, R., Driscoll, D. A., Dutilleux, G., Dyrmann, M., Edwards, D. P., Farhadinia, M. S., Faruk, A., Field, R., Fletcher, R. J., Foster, C. W., Fox, R., Francksen, R. M., Franco, A. M., Gainsbury, A. M., Gardner, C. J., Giorgi, I., Griffiths, R. A., Hamaza, S., Hanheide, M., Hayward, M. W., Hedblom, M., Helgason, T., Heon, S. P., Hughes, K. A., Hunt, E. R., Ingram, D. J., Jackson-Mills, G., Jowett, K., Keitt, T. H., Kloepper, L. N., Kramer-Schadt, S., Labisko, J., Labrosse, F., Lawson, J., Lecomte, N., Lima, R. F. D., Littlewood, N. A., Marshall, H. H., Masala, G. L., Maskell, L. C., Matechou, E., Mazzolai, B., McConnell, A., Melbourne, B. A., Miriyev, A., Nana, E. D., Ossola, A., Papworth, S., Parr, C. L., Payo-Payo, A., Perry, G., Pettorelli, N., Pillay, R., Potts, S. G., Prendergast-Miller, M. T., Qie, L., Rolley-Parnell, P., Rossiter, S. J., Rowcliffe, M., Rumble, H., Sadler, J. P., Sandom, C. J., Sanyal, A., Schrodt, F., Sethi, S. S., Shabrani80, A., Siddall, R., Smith, S. C., Snep, R. P., Soulsbury, C. D., Stanley, M. C., Stephens, P. A., Stephenson, P. J., Struebig, M. J., Studley, M., Svatek, M., Tang, G., Taylor, N. K., Umbers, K. D., Ward, R. J., White, P. J. C., Whittingham, M. J., Wich, S., Williams, C. D., Yakubu, I. B., Yoh, N., Zaidi, S. A. R., Zmarz, A., Davies, J. A. Z. and Davies, Z. G.
Abstract

With biodiversity loss escalating globally, a step-change is needed in our capacity to accurately monitor species populations across ecosystems. Robotic and autonomous systems (RAS) offer technological solutions that may significantly advance terrestrial biodiversity monitoring, but this potential is yet to be considered systematically. We used a modified Delphi technique to synthesise knowledge from 98 biodiversity and 31 RAS experts from around the world, identifying the major methodological barriers that currently hinder monitoring, and exploring the opportunities and challenges that RAS offer to overcome these barriers. Biodiversity experts identified four barrier categories: site access, species/individual identification, data handling/storage and power/network availability. RAS experts highlighted currently available technologies and capabilities that could overcome these barriers. Some existing RAS could be optimised relatively easily to survey species, but would require development to monitor more ‘difficult’ taxa and be robust enough to work in the uncontrolled, and often extreme, conditions within ecosystems. Other nascent technologies (e.g., novel sensors, biodegradable robots) need accelerated research. Overall, it was felt that RAS could lead to major progress in monitoring terrestrial biodiversity by supplementing, rather than supplanting, existing methods. Transdisciplinarity needs to be fostered between biodiversity and RAS experts, so future ideas and technologies can be co-developed effectively.

Year of Publication2025
JournalNature Ecology & Evolution
Digital Object Identifier (DOI)https://doi.org/10.1038/s41559-025-02704-9
Open accessPublished as ‘gold’ (paid) open access
Publisher's version
Copyright license
CC BY
Output statusPublished
Publication dates
Online22 May 2025
PublisherNature Publishing Group
ISSN2397-334X

Permalink - https://repository.rothamsted.ac.uk/item/993qx/identifying-the-opportunities-and-challenges-for-monitoring-terrestrial-biodiversity-in-the-robotics-age

2 total views
0 total downloads
2 views this month
0 downloads this month
Download files as zip