Improving wheat as a source of iron and zinc for global nutrition

A - Papers appearing in refereed journals

Balk, J., Connorton J. M., Wan, Y., Lovegrove, A., Moore, K. L., Uauy, C., Sharp, P. A. and Shewry, P. R. 2019. Improving wheat as a source of iron and zinc for global nutrition. Nutrition Bulletin. 44 (1), pp. 53-59. https://doi.org/10.1111/nbu.12361

AuthorsBalk, J., Connorton J. M., Wan, Y., Lovegrove, A., Moore, K. L., Uauy, C., Sharp, P. A. and Shewry, P. R.
Abstract

Wheat is the staple food crop in temperate countries and increasingly consumed in developing countries, displacing traditional foods. However, wheat products are typically low in bioavailable iron and zinc, contributing to deficiencies in these micronutrients in countries where wheat is consumed as a staple food. Two factors contribute to the low contents of bioavailable iron and zinc in wheat: the low concentrations of these minerals in white flour, which is most widely consumed, and their presence as phytates in mineral-rich bran fractions. Although high zinc types of wheat have been developed by conventional plant breeding (biofortification), this approach has failed for iron. However, studies in wheat and other cereals have shown that transgenic (also known as genetically modified; GM) strategies can be used to increase the contents of iron and zinc in white flour, by converting the starchy endosperm tissue into a ‘sink’ for minerals. Although such strategies currently have low acceptability, greater understanding of the mechanisms which control the transport and deposition of iron and zinc in the developing grain should allow similar effects to be achieved by exploiting naturally induced genetic variation. When combined with conventional biofortification and innovative processing, this approach should provide increased mineral bioavailability in a range of wheat products, from white flour to wholemeal.

KeywordsBioavailability; Biofortification; Iron; Phytic acid; Wheat; Zinc
Year of Publication2019
JournalNutrition Bulletin
Journal citation44 (1), pp. 53-59
Digital Object Identifier (DOI)https://doi.org/10.1111/nbu.12361
PubMed ID31007606
PubMed Central IDPMC6472571
Open accessPublished as ‘gold’ (paid) open access
FunderBiotechnology and Biological Sciences Research Council
Funder project or codeDesigning Future Wheat (DFW) [ISPG]
CROPNUT: increasing iron in cereals
DFW - Designing Future Wheat - Work package 2 (WP2) - Added value and resilience
Publisher's version
Accepted author manuscript
Output statusPublished
Publication dates
Online14 Jan 2019
Publication process dates
Accepted30 Nov 2018
Copyright licenseCC BY
PublisherWiley
ISSN1467-3010

Permalink - https://repository.rothamsted.ac.uk/item/84v90/improving-wheat-as-a-source-of-iron-and-zinc-for-global-nutrition

1103 total views
403 total downloads
0 views this month
0 downloads this month
Download files as zip