A - Papers appearing in refereed journals
Lehmann, J., Skjemstad, J., Sohi, S., Carter, John, Barson, M., Falloon, P., Coleman, K., Woodbury, P. and Krull, E. 2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geoscience. 1, pp. 832-835. https://doi.org/10.1038/ngeo358
Authors | Lehmann, J., Skjemstad, J., Sohi, S., Carter, John, Barson, M., Falloon, P., Coleman, K., Woodbury, P. and Krull, E. |
---|---|
Abstract | Annual emissions of carbon dioxide from soil organic carbon are an order of magnitude greater than all anthropogenic carbon dioxide emissions taken together1. Global warming is likely to increase the decomposition of soil organic carbon, and thus the release of carbon dioxide from soils2,3,4,5, creating a positive feedback6,7,8,9. Current models of global climate change that recognize this soil carbon feedback are inaccurate if a larger fraction of soil organic carbon than postulated has a very slow decomposition rate. Here we show that by including realistic stocks of black carbon in prediction models, carbon dioxide emissions are reduced by 18.3 and 24.4% in two Australian savannah regions in response to a warming of 3 ∘C over 100 years1. This reduction in temperature sensitivity, and thus the magnitude of the positive feedback, results from the long mean residence time of black carbon, which we estimate to be approximately 1,300 and 2,600 years, respectively. The inclusion of black carbon in climate models is likely to require spatially explicit information about its distribution, given that the black carbon content of soils ranged from 0 to 82% of soil organic carbon in a continental-scale analysis of Australia. We conclude that accurate information about the distribution of black carbon in soils is important for projections of future climate change. |
Year of Publication | 2008 |
Journal | Nature Geoscience |
Journal citation | 1, pp. 832-835 |
Digital Object Identifier (DOI) | https://doi.org/10.1038/ngeo358 |
Open access | Published as green open access |
Funder project or code | SEF |
Microbial function in nitrogen and carbon transformations | |
Dynamics of organic carbon in soil | |
Publisher's version | Copyright license CC BY |
Supplemental file | Copyright license CC BY |
Output status | Published |
Publication dates | |
Online | 16 Nov 2008 |
ISSN | 1752-0894 |
Publisher | Nature Publishing Group |
Permalink - https://repository.rothamsted.ac.uk/item/8q113/australian-climate-carbon-cycle-feedback-reduced-by-soil-black-carbon