Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil

A - Papers appearing in refereed journals

Jones, C., Mcconnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D. S. and Powlson, D. S. 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology. 11 (1), pp. 154-166. https://doi.org/10.1111/j.1365-2486.2004.00885.x

AuthorsJones, C., Mcconnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D. S. and Powlson, D. S.
Abstract

Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated global warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre's coupled climate-carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated 'RothC' multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 Gt C by 2100 in a climate change simulation compared with an 80 Gt C decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.

KeywordsBiodiversity conservation; Ecology; Environmental Sciences
Year of Publication2005
JournalGlobal Change Biology
Journal citation11 (1), pp. 154-166
Digital Object Identifier (DOI)https://doi.org/10.1111/j.1365-2486.2004.00885.x
Open accessPublished as non-open access
FunderBiotechnology and Biological Sciences Research Council
Funder project or code511
Dynamics of organic carbon in soil
PublisherWiley
ISSN1354-1013

Permalink - https://repository.rothamsted.ac.uk/item/895qq/global-climate-change-and-soil-carbon-stocks-predictions-from-two-contrasting-models-for-the-turnover-of-organic-carbon-in-soil

Restricted files

Publisher's version

Under embargo indefinitely

496 total views
0 total downloads
0 views this month
0 downloads this month