Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E., Caliman, J-P., Cardinael, R., Chen, S., Ciais, P., Desbois, D., Fouche, J., Frank, S., Henault, C., Lugato, E., Naipal, V., Nesme, T., Obersteiner, M., Pellerin, S., Powlson, D. S., Rasse, D., Rees, F., Soussana, J-F., Su, Y., Tian, H., Valin, H. and Zhou, F. 2020. Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology. https://doi.org/10.1111/gcb.15342
Lopez, M., Horrocks, C. A., Charteris, A., Marsden, K. A., Ciganda, V. S., Evans, J., Chadwick, D. R. and Cardenas, L. M. 2020. Meta-analysis of global livestock urine-derived nitrous oxide emissions from agricultural soils. Global Change Biology. 26 (4), pp. 2002-2013. https://doi.org/10.1111/gcb.15012
Liu, B., Martre, P., Ewert, F., Porter, J. R., Challinor, A. J., Muller, C., Ruane, A. C., Waha, K., Thorburn, P. J., Aggarwal, P. K., Ahmed, M., Balkovič, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., De Sanctis, G., Dumont, B., Espadafor, M, Rezaei, E. E., Ferrise, R., Garcia-Vila, M., Galyer, S., Gao, Y., Horan, H., Hoogenboom, G., Izaurralde, R. C., Jones, C. D., Kassie, B. T., Kersebaum, K. C., Klein, C., Koehler, A.-K., Maiorano, A., Minoli, A., Montesino San Martin, M., Kumar, S.N., Nendel, C., O’Leary, G. J., Paluoso, T., Priesack, E., Riposhe, D., Rotter, R. P., Semenov, M. A., Stockle, C., Streck, T., Supit, I., Tao, F., Van der Velde, M., Wallach, D., Wang, E., Webber, H., Wolf, J., Xiao, L., Zhang, Z., Zhao, Z., Zhue, Y. and Asseng, S. 2019. Global wheat production with 1.5 and 2.0°C above pre‐industrial warming. Global Change Biology. 25 (4), pp. 1428-1444. https://doi.org/10.1111/gcb.14542
Bell, J. R., Botham, M. S., Henrys, P. A., Leech, D. I., Pearce-Higgins, J. W., Shortall, C. R., Brereton, T. M., Pickup, J. and Thackeray, S. J. 2019. Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Global Change Biology. 25 (6), pp. 1982-1994. https://doi.org/10.1111/gcb.14592
Asseng, S., Martre, P., Maiorano, A., Rotter, R. P., O'Leary, G. J., Fitzgerald, G. J., Girousse, C., Motzo, R., Giunta, F., Babar, M. A., Reynolds, M. P., Kheir, A. M. S., Thorburn, P. J., Ruane, A. C., Waha, K, Aggarwal, P. K., Ahmed, M., Balkovic, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., Challinor, A. J., De Sanctis, D., Dumont, B., Eyshi Rezaei, E., Fereres, E., Ferrise, R., Garcia-Vila, M., Gayler, S., Gao, Y., Horan, H., Hoggenboom, G., Izaurralde, R. C., Jabloun, M., Jones, C., Kassie, B. T., Kersebaum, K-C., Klein, C., Koehler, A-K., Liu, B., Minoli, S., San Martin, M. M., Muller, C., Kumar, S. N., Nendel, C., Olesen, J. E., Palosuo, T., Porter, J., Priesack, E., Ripoche, D., Semenov, M. A., Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Van der Velde, M., Wallach, D., Wang, E., Webber, H., Wolf, J., Xiao, L., Zhang, Z., Zhao, Z., Zhu, Y. and Ewert, F. 2019. Climate change impact and adaptation for wheat protein. Global Change Biology. 25 (1), pp. 155-173. https://doi.org/10.1111/gcb.14481
Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., Van Ittersum, M., Aggarwal, P. K., Ahmed, M., Basso, B., Biernath, C., Cammarano, D., Challinor, A. J., De Sanctis, G., Dumont, B., Eyshi Rezaei, E., Fereres, E., Fitzgerald, G. J., Gao, Y., Garcia-Vila, M., Galyer, S., Girousse, C., Hoogenboom, G., Horan, H., Izaurralde, R. C., Jones, C. D., Kassie, B. T., Kersebaum, K. C., Klein, C., Koehler, A.-K., Maiorano, A., Minoli, S., Muller,C., Kumar, S. N., Nendel, C., O'Leary, G., Palosuo, T., Priesack, E., Ripoche, D., Rotter, R. P., Semenov, M. A., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Wolf, J. and Zhang, Z 2018. Multi-model ensembles improve predictions of crop-environment-management interactions. Global Change Biology. 24 (11), pp. 5072-5083. https://doi.org/10.1111/gcb.14411
Gao, B., Huang, T., Ju, X., Gu, B., Huang, W., Xu, L., Rees, R., Powlson, D. S., Smith, P. and Cui, S. 2018. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology. 24 (12), pp. 5590-5606. https://doi.org/10.1111/gcb.14425
Li, T., Zhang, W., Yin, J., Chadwick, D. R., Norse, D., Lu, Y., Liu, X., Chen, X., Zhang, F., Powlson, D. S. and Dou, Z. 2018. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Global Change Biology. 24 (2), pp. e511-e521. https://doi.org/10.1111/gcb.13918
Stepanian, P. M. and Wainwright, C. E. 2018. Ongoing changes in migration phenology and winter residency at Bracken Bat Cave. Global Change Biology. 24 (7), pp. 3266-3275. https://doi.org/10.1111/gcb.14051
Gao, B., Huang, T., Ju, X., Gu, B., Huang, W., Xu, L., Rees, R. M., Powlson, D. S., Smith, P. and Cui, S. 2018. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology. 24 (12), pp. 5590-5606. https://doi.org/10.1111/gcb.14425
Bai, Z., Lee, M. R. F., Ma, L., Ledgard, S., Oenema. O., Velthof, G. L., Ma, W., Guo, M., Zhao, Z., Wei, S., Li, S., Liu, X., Havlik, P., Luo, J., Hu, C. and Zhang, F. 2018. Global environmental costs of China's thirst for milk. Global Change Biology. 24 (5), pp. 2198-2211. https://doi.org/10.1111/gcb.14047
Ehrhardt, F., Soussana, J-F., Bellocchi, G., Grace, P., McAuliffe, R., Recous, S., Sandor, R., Smith, P., Snow, V., De Antoni Migliorati, M., Basso, B., Bhatia, A., Brilli, L., Doltra, J., Dorich, C. D., Doro, L., Fitton, N., Giacomini, S., Grant, B., Harrison, M., Jones, S., Kirschbaum, M., Klumpp, K., Laville, P., leonard, J., Liebig, M., Lieffering, M., Martin, R., Massad, R. S., Meier, E., Merbold, L., Moore, A., Myrgiotis, V., Newton, P., Pattey, E., Rolinski, S., Sharp, J., Smith, W., Wu, L. and Zhang, Q. 2018. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions. Global Change Biology. 24 (2), p. e603–e616. https://doi.org/10.1111/gcb.13965
Poulton, P. R., Johnston, A. E., Macdonald, A. J., White, R. P. and Powlson, D. S. 2018. Major limitations to achieving 4 per 1000 increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, UK. Global Change Biology. 24 (6), pp. 2563-2584. https://doi.org/10.1111/gcb.14066
Tao, F., Rotter, R. P., Palosuo, T., Diaz-Ambrona, C. G. H., Minguez, M. I., Semenov, M. A., Kersebaum, K. C., Nendel, C., Specka, X.., Hoffmann, H., Ewert, F., Dambrevill, A., Martre, P., Rodriguez, L., Ruiz-Ramos, M., Gaiser, T., Hohn, J. G., Salo, T., Ferrise, R., Bindi, M., Cammarano, D. and Schulman, A.H. 2018. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology. 24 (3), pp. 1291-1307. https://doi.org/10.1111/gcb.14019
Franks, S. E., Pearce-Higgins, J. W., Atkinson, S., Bell, J. R., Botham, M. S., Brereton, T. M., Harrington, R. and Leech, D. I. 2018. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Global Change Biology. 24 (3), pp. 957-971. https://doi.org/10.1111/gcb.13960
Jiang, Y., Van Groenigen, K. J., Huang, S., Hungate, B. A., Van Kessel, C., Hu, S., Zhang, J., Wu, L., Yan, X., Wang, L., Chen, J., Hang, X., Zhang, Y., Horwath, W. R., Ye, R., Linquist, B. A., Song, Z., Zheng, C., Deng, A. and Zhang, W. 2017. Higher yields and lower methane emissions with new rice cultivars. Global Change Biology. 23 (11), pp. 4728-4738. https://doi.org/10.1111/gcb.13737
Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R., Shiel, R. S., Wilby, A. and Bardgett, R. D. 2016. Legacy effects of grassland management on soil carbon to depth. Global Change Biology. 22 (8), pp. 2929-2938. https://doi.org/10.1111/gcb.13246
Ladha, J. K., Rao, A. N., Raman, A. K., Padre, A. T., Dobermann, A., Gathala, M., Kumar, V., Saharawat, Y., Sharma, S., Piepho, H. P., Alam, M. M., Liak, R., Rajendran, R., Reddy, C. K., Parsad, R., Sharma, P. C., Singh, S. S., Saha, A. and Noor, S. 2016. Agronomic improvements can make future cereal systems in South Asia far more productive and result in a lower environmental footprint. Global Change Biology. 22 (3), pp. 1054-1074. https://doi.org/10.1111/gcb.13143
Emelko, M. B., Stone, M., Silins, U., Allin, D., Collins, A. L., Williams, C. H. S., Martens, A. M. and Bladon, K. D. 2016. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Global Change Biology. 22 (3), pp. 1168-1184. https://doi.org/10.1111/gcb.13073
Martre, P., Semenov, M. A. and Stratonovitch, P. 2015. Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology. 21 (2), pp. 911-925. https://doi.org/10.1111/gcb.12768
Viscarra Rossell, R. A., Webster, R., Bui, E. N. and Baldock, J. A. 2014. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Global Change Biology. 20 (9), pp. 2953-2970. https://doi.org/10.1111/gcb.12569
Smith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R. M., Mcnamara, N. P., Powlson, D. S., Cowie, A., Van Noordwijk, M., Davis, S. C., Richter, D. De B., Kryzanowski, L., Van Wijk, M. T., Stuart, J., Kirton, A., Eggar, D., Newton-Cross, G., Adhya, T. K. and Braimoh, A. K. 2012. Towards and integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Global Change Biology. 18 (7), pp. 2089-2101. https://doi.org/10.1111/j.1365-2486.2012.02689.x
Stratonovitch, P., Storkey, J. and Semenov, M. A. 2012. A process-based approach to modelling impacts of climate change on the damage niche of an agricultural weed. Global Change Biology. 18 (6), pp. 2071-2080. https://doi.org/10.1111/j.1365-2486.2012.02650.x
Kohler, I. H., Macdonald, A. J. and Schnyder, H. 2012. Nutrient supply enhanced the increase in intrinsic water-use efficiency of a temperate seminatural grassland in the last century. Global Change Biology. 18 (11), pp. 3367-3376. https://doi.org/10.1111/j.1365-2486.2012.02781.x
Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. and Whitmore, A. P. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology. 18 (6), pp. 1781-1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x
Fornara, D. A., Steinbeiss, S., Mcnamara, N. P., Gleixner, G., Oakley, S., Poulton, P. R., Macdonald, A. J. and Bardgett, R. D. 2011. Corrigendum: Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology. 17 (8), p. 2762. https://doi.org/10.1111/j.1365-2486.2011.02445.x
Fornara, D. A., Steinbeiss, S., Mcnamara, N. P., Gleixner, G., Oakley, S., Poulton, P. R., Macdonald, A. J. and Bardgett, R. D. 2011. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology. 17 (5), pp. 1925-1934. https://doi.org/10.1111/j.1365-2486.2010.02328.x
Thackeray, S. J., Sparks, T. H., Frederiksen, M., Burthes, S., Bacon, P. J., Bell, J. R., Botham, M. C., Brereton, T. M., Bright, P. W., Carvalho, L., Clutton-Brock, T., Dawson, A., Edwards, M., Elliott, J. M., Harrington, R., Johns, D., Jones, I. D., Jones, J. T., Leech, D. I., Roy, D. B., Scott, W. A., Smith, M., Smithers, R. J., Winfield, I. J. and Wanless, S. 2010. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology. 16 (12), pp. 3304-3313. https://doi.org/10.1111/j.1365-2486.2010.02165.x
Kirk, G. J. D., Bellamy, P. H. and Lark, R. M. 2010. Changes in soil pH across England and Wales in response to decreased acid deposition. Global Change Biology. 16 (11), pp. 3111-3119. https://doi.org/10.1111/j.1365-2486.2009.02135.x
Kohler, I. H., Poulton, P. R., Auerswald, K. and Schnyder, H. 2010. Intrinsic water-use efficiency of temperate seminatural grassland has increased since 1857: an analysis of carbon isotope discrimination of herbage from the Park Grass Experiment. Global Change Biology. 16 (5), pp. 1531-1541. https://doi.org/10.1111/j.1365-2486.2009.02067.x
Hopkins, D. W., Waite, I. S., Mcnichol, J. W., Poulton, P. R., Macdonald, A. J. and O'donnell, A. G. 2009. Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Global Change Biology. 15 (7), pp. 1739-1754. https://doi.org/10.1111/j.1365-2486.2008.01809.x
Harrington, R., Clark, S. J., Welham, S. J., Verrier, P. J., Denholm, C. H., Hulle, M., Maurice, D., Rounsevell, M. D., Cocu, N. and European Union Examine Consortium 2007. Environmental change and the phenology of European aphids. Global Change Biology. 13 (8), pp. 1550-1564. https://doi.org/10.1111/j.1365-2486.2007.01394.x
Krull, E., Bray, S., Harms, B., Baxter, N., Bol, R. and Farquhar, G. 2007. Development of a stable isotope index to assess decadal-scale vegetation change and application to woodlands of the Burdekin catchment, Australia. Global Change Biology. 13 (7), pp. 1455-1468. https://doi.org/10.1111/j.1365-2486.2007.01376.x
Niklaus, P. A. and Falloon, P. 2006. Estimating soil carbon sequestration under elevated CO2 by combining carbon isotope labelling with soil carbon cycle modelling. Global Change Biology. 12 (10), pp. 1909-1921. https://doi.org/10.1111/j.1365-2486.2006.01215.x
Willis, J. C., Bohan, D. A., Choi, Y. H., Conrad, K. F. and Semenov, M. A. 2006. Use of an individual-based model to forecast the effect of climate change on the dynamics, abundance and geographical range of the pest slug Deroceras reticulatum in the UK. Global Change Biology. 12 (9), pp. 1643-1657. https://doi.org/10.1111/j.1365-2486.2006.01201.x
Tye, A. M., Young, S. D., Crout, N. M. J., West, H. M., Stapleton, L. M., Poulton, P. R. and Laybourn-Parry, J. 2005. The fate of 15N added to high Arctic tundra to mimic increased inputs of atmospheric nitrogen released from a melting snowpack. Global Change Biology. 11 (10), pp. 1640-1654. https://doi.org/10.1111/j.1365-2486.2005.01044.x
Jones, C., Mcconnell, C., Coleman, K., Cox, P., Falloon, P., Jenkinson, D. S. and Powlson, D. S. 2005. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Global Change Biology. 11 (1), pp. 154-166. https://doi.org/10.1111/j.1365-2486.2004.00885.x
Awmack, C. S., Harrington, R. and Lindroth, R. L. 2004. Aphid individual performance may not predict population responses to elevated CO2 or O3. Global Change Biology. 10 (8), pp. 1414-1423. https://doi.org/10.1111/j.1365-2486.2004.00800.x
Poulton, P. R., Pye, E., Hargreaves, P. R. and Jenkinson, D. S. 2003. Accumulation of carbon and nitrogen by old arable land reverting to woodland. Global Change Biology. 9 (6), pp. 942-955. https://doi.org/10.1046/j.1365-2486.2003.00633.x
Conrad, K. F., Woiwod, I. P. and Perry, J. N. 2003. East Atlantic teleconnection pattern and the decline of a common arctiid moth. Global Change Biology. 9 (2), pp. 125-130. https://doi.org/10.1046/j.1365-2486.2003.00572.x