Legacy effects of grassland management on soil carbon to depth

A - Papers appearing in refereed journals

Ward, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R., Shiel, R. S., Wilby, A. and Bardgett, R. D. 2016. Legacy effects of grassland management on soil carbon to depth. Global Change Biology. 22 (8), pp. 2929-2938. https://doi.org/10.1111/gcb.13246

AuthorsWard, S. E., Smart, S. M., Quirk, H., Tallowin, J. R. B., Mortimer, S. R., Shiel, R. S., Wilby, A. and Bardgett, R. D.

The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097TgC to a depth of 1m, with -60% of this carbon being below 30cm. Total stocks of soil carbon (tha(-1)) to 1m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1tha(-1) in surface soils (0-30cm), and 13.7tha(-1) in soils from 30 to 100cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.

Keywordsbiodiversity conservation; Ecology; Environmental Sciences
Year of Publication2016
JournalGlobal Change Biology
Journal citation22 (8), pp. 2929-2938
Digital Object Identifier (DOI)https://doi.org/10.1111/gcb.13246
PubMed ID26854892
Open accessPublished as non-open access
FunderDEFRA - Department for Environment, Food and Rural Affairs UK
Grant IDBD5003

Permalink - https://repository.rothamsted.ac.uk/item/8v34x/legacy-effects-of-grassland-management-on-soil-carbon-to-depth

Restricted files

Publisher's version

Under embargo indefinitely

197 total views
1 total downloads
1 views this month
0 downloads this month