The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity

A - Papers appearing in refereed journals

Franks, S. E., Pearce-Higgins, J. W., Atkinson, S., Bell, J. R., Botham, M. S., Brereton, T. M., Harrington, R. and Leech, D. I. 2018. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Global Change Biology. 24 (3), pp. 957-971. https://doi.org/10.1111/gcb.13960

AuthorsFranks, S. E., Pearce-Higgins, J. W., Atkinson, S., Bell, J. R., Botham, M. S., Brereton, T. M., Harrington, R. and Leech, D. I.
Abstract

A consequence of climate change has been an advance in the timing of seasonal events. Differences in the rate of advance between trophic levels may result in predators becoming mismatched with prey availability, reducing fitness and potentially driving population declines. Such “trophic asynchrony” is hypothesized to have contributed to recent population declines of long-distance migratory birds in particular. Using spatially extensive survey data from 1983 to 2010 to estimate variation in spring phenology from 280 plant and insect species and the egg-laying phenology of 21 British songbird species, we explored the effects of trophic asynchrony on avian population trends and potential underlying demographic mechanisms. Species which advanced their laying dates least over the last three decades, and were therefore at greatest risk of asynchrony, exhibited the most negative population trends. We expressed asynchrony as the annual variation in bird phenology relative to spring phenology, and related asynchrony to annual avian productivity. In warmer springs, birds were more asynchronous, but productivity was only marginally reduced; long-distance migrants, short-distance migrants and resident bird species all exhibited effects of similar magnitude. Long-term population, but not productivity, declines were greatest among those species whose annual productivity was most greatly reduced by asynchrony. This suggests that population change is not mechanistically driven by the negative effects of asynchrony on productivity. The apparent effects of asynchrony on population trends are therefore either more likely to be strongly expressed via other demo-graphic pathways, or alternatively, are a surrogate for species’ sensitivity to other environmental pressures which are the ultimate cause of decline.

KeywordsCitizen science; Climate change; Demography; Migration; Mismatch hypothesis; Phenology; Population change; Trophic asynchrony
Year of Publication2018
JournalGlobal Change Biology
Journal citation24 (3), pp. 957-971
Digital Object Identifier (DOI)https://doi.org/10.1111/gcb.13960
Open accessPublished as non-open access
FunderBiotechnology and Biological Sciences Research Council
Funder project or codeThe Rothamsted Insect Survey - National Capability [2017-2022]
Publisher's version
Copyright license
Publisher copyright
Output statusPublished
Publication dates
Print20 Nov 2017
Publication process dates
Accepted07 Aug 2017
PublisherWiley
ISSN1354-1013

Permalink - https://repository.rothamsted.ac.uk/item/84506/the-sensitivity-of-breeding-songbirds-to-changes-in-seasonal-timing-is-linked-to-population-change-but-cannot-be-directly-attributed-to-the-effects-of-trophic-asynchrony-on-productivity

Restricted files

Publisher's version

Under embargo indefinitely

156 total views
3 total downloads
1 views this month
0 downloads this month