A - Papers appearing in refereed journals
Bourhis, Y., Bell, J. R., Van Den Bosch, F. and Milne, A. E. 2021. Artificial neural networks for monitoring network optimisation—a practical example using a national insect survey. Environmental Modelling and Software. 135, p. 104925. https://doi.org/10.1016/j.envsoft.2020.104925
Authors | Bourhis, Y., Bell, J. R., Van Den Bosch, F. and Milne, A. E. |
---|---|
Abstract | Monitoring networks are improved by additional sensors. Optimal configurations of sensors give better representations of the process of interest, maximising its exploration while minimising the need for costly infrastructure. By modelling the monitored process, we can identify gaps in its representation, i.e. uncertain predictions, where additional sensors should be located. Here, with data collected from the Rothamsted Insect Survey network, we train an artificial neural network to predict the seasonal aphid arrival from environmental variables. We focus on estimating prediction uncertainty across the UK to guide the addition of a sensor to the network. We first illustrate how to estimate uncertainty in neural networks, hence making them relevant for model-based monitoring network optimisation. Then we highlight critical areas of agricultural importance where additional traps would improve decision support and crop protection in the UK. Possible applications include most ecological monitoring and surveillance activities, but also the weather or pollution monitoring. |
Keywords | Uncertainty estimation ; Artificial neural network ; Surveillance; Monitoring network; Aphid |
Year of Publication | 2021 |
Journal | Environmental Modelling and Software |
Journal citation | 135, p. 104925 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.envsoft.2020.104925 |
Web address (URL) | https://www.sciencedirect.com/science/article/pii/S1364815220309828?dgcid=coauthor |
Open access | Published as non-open access |
Funder | Biotechnology and Biological Sciences Research Council |
Funder project or code | BBSRC Strategic Programme in Smart Crop Protection |
The Rothamsted Insect Survey - National Capability [2017-2023] | |
Output status | Published |
Publication dates | |
Online | 05 Nov 2020 |
Publication process dates | |
Accepted | 31 Oct 2020 |
Publisher | Elsevier |
ISSN | 1364-8152 |
Permalink - https://repository.rothamsted.ac.uk/item/98262/artificial-neural-networks-for-monitoring-network-optimisation-a-practical-example-using-a-national-insect-survey
Publisher's version