Significant soil degradation is associated with intensive vegetable cropping in a subtropical area: a case study in southwestern China

A - Papers appearing in refereed journals

Lu, M., Powlson, D. S., Liang, Y., Chadwick, D. R., Long, S., Liu, D. and Chen, X. 2021. Significant soil degradation is associated with intensive vegetable cropping in a subtropical area: a case study in southwestern China. Soil. 7, pp. 333-346. https://doi.org/10.5194/soil-7-333-2021

AuthorsLu, M., Powlson, D. S., Liang, Y., Chadwick, D. R., Long, S., Liu, D. and Chen, X.
Abstract

Within the context of sustainable development, soil degradation driven by land use change is considered a serious global problem, but the conversion from growing cereals to vegetables is a change that has received limited attention, especially in subtropical regions. Here, we studied the effects of the conversion from paddy rice to an oilseed rape rotation to vegetable production in southwestern China on soil organic carbon (SOC), total nitrogen (TN), the C/N ratio, pH, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) based on face-to-face farmer surveys and soil analysis. In the vegetable cropping system, fertilizer application often exceeds the crop demand or levels recommended by the local extension service several times over. Thus, the crop use efficiency of N, P, K, Ca, and Mg was only 26 %, 8 %, 56 %, 23 %, and 28 %, respectively. In the vegetable cropping system studied, SOC, C stock, TN, and N stock were decreased significantly due to low organic inputs from crop residues and high tillage frequency. Furthermore, the soil C/N ratio decreased slightly; available P (AP) in the topsoil increased by 1.92 mg kg−1 for every 100 kg ha−1 of P surplus, and the critical levels of AP and CaCl2-soluble P in P leaching were 104 and 0.80 mg P kg−1. Besides, compared to the current paddy–rape rotation system, a clear trend of soil acidification was observed in the vegetable fields. However, increasing the contents of soil Ca and Mg significantly alleviated topsoil acidification, with the effect increasing over time. Given our findings, the potential benefits of conservation agricultural practices, integrated soil–crop system management strategies, and agricultural technology services for recovering the degraded soil and improving the vegetable productivity are discussed here.

Year of Publication2021
JournalSoil
Journal citation7, pp. 333-346
Digital Object Identifier (DOI)https://doi.org/10.5194/soil-7-333-2021
Open accessPublished as ‘gold’ (paid) open access
FunderBiotechnology and Biological Sciences Research Council
Funder project or codeS2N - Soil to Nutrition [ISPG]
Publisher's version
Output statusPublished
Publication dates
Online02 Jul 2021
Publication process dates
Accepted09 Jun 2021
PublisherEuropean Geosciences Union (EGU)
ISSN2199-3971

Permalink - https://repository.rothamsted.ac.uk/item/985qz/significant-soil-degradation-is-associated-with-intensive-vegetable-cropping-in-a-subtropical-area-a-case-study-in-southwestern-china

12 total views
2 total downloads
9 views this month
2 downloads this month
Download files as zip