A - Papers appearing in refereed journals
Powlson, D. S., Poulton, P. R., Glendining, M. J., Macdonald, A. J. and Goulding, K. W. T. 2022. Is it possible to attain the same soil organic matter content in arable agriculture soils as under natural vegetation? Outlook on Agriculture. 51 (1), pp. 91-104. https://doi.org/10.1177/00307270221082113
Authors | Powlson, D. S., Poulton, P. R., Glendining, M. J., Macdonald, A. J. and Goulding, K. W. T. |
---|---|
Abstract | Clearing natural vegetation to establish arable agriculture (cropland) almost invariably causes a loss of soil organic carbon (SOC). Is it possible to restore soil that continues in arable agriculture to the pre-clearance SOC level through modified management practices? To address this question we reviewed evidence from long-term experiments at Rothamsted Research, UK, Bad Lauchstädt, Germany, Sanborn Field, USA and Brazil and both experiments and surveys of farmers’ fields in Ethiopia Australia, Zimbabwe, UK and Chile. In most cases SOC content in soil under arable cropping was in the range 38-67% of pre-clearance values. Returning crop residues, adding manures or including periods of pasture within arable rotations increased this, often to 60-70% of initial values. Under tropical climatic conditions SOC loss after clearance was particularly rapid, e.g. a loss of >50% in less than 10 years in smallholder farmers’ fields in Zimbabwe. If larger yielding crops were grown, using fertilizers, and maize stover returned instead of being grazed by cattle, the loss was reduced. An important exception to the general trend of SOC loss after clearance was clearing Cerrado vegetation on highly weathered acidic soils in Brazil and conversion to cropping with maize and soybean. Other exceptions were unrealistically large annual applications of manure and including long periods of pasture in a highly SOC-retentive volcanic soil. Also, introducing irrigated agriculture in a low rainfall region can increase SOC beyond the natural value due to increased plant biomass production. For reasons of sustainability and soil health it is important to maintain SOC as high as practically possible in arable soils, but we conclude that in the vast majority of situations it is unrealistic to expect to maintain pre-clearance values. To maintain global SOC stocks at we consider it is more important to reduce current rates of land clearance and sustainably produce necessary food on existing agricultural land. |
Keywords | Soil carbon; Soil health; Climate change; Carbon sequestration; Rewilding; Arable cropping; Natural vegetation; Biomimicry |
Year of Publication | 2022 |
Journal | Outlook on Agriculture |
Journal citation | 51 (1), pp. 91-104 |
Digital Object Identifier (DOI) | https://doi.org/10.1177/00307270221082113 |
Open access | Published as ‘gold’ (paid) open access |
Funder | Biotechnology and Biological Sciences Research Council |
Funder project or code | The Rothamsted Long Term Experiments [2017-2022] |
Publisher's version | |
Output status | Published |
Publication dates | |
Online | 21 Feb 2022 |
Publisher | Sage Publishing |
ISSN | 0030-7270 |
Permalink - https://repository.rothamsted.ac.uk/item/987y6/is-it-possible-to-attain-the-same-soil-organic-matter-content-in-arable-agriculture-soils-as-under-natural-vegetation
Accepted author manuscript