David Withall

NameDavid Withall
Job titleResearch Scientist - Synthetic and Biological Chemist
Email addressdavid.withall@rothamsted.ac.uk
DepartmentBiointeractions and Crop Protection
Research clusterBCP: Pest-Host Interactions
OfficeHarpenden

Research outputs

Development of an attract-and-infect device for biological control of lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae) in poultry houses

Hassemer, M. J., Lopes, R. B., Borges, M., Alves, L. F. A, Withall, D. M., Pickett, J. A., Laumann, R. A., Birkett, M. A. and Blassioli-Moraes, C. 2020. Development of an attract-and-infect device for biological control of lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae) in poultry houses . Biological Control. 2020 (149), p. 104326.

Identification of semiochemicals from cowpea, Vigna unguiculata, for low-input management of the Legume Pod Borer, Maruca vitrata

Osei-Owusu, J., Vuts, J., Caulfield, J. C., Woodcock, C. M., Withall, D., Hooper, A. M., Osafo-Acquaah, S. and Birkett, M. A. 2020. Identification of semiochemicals from cowpea, Vigna unguiculata, for low-input management of the Legume Pod Borer, Maruca vitrata. Journal of Chemical Ecology. pp. 1-11.

Environmentally vulnerable noble chafers exhibit unusual pheromone-mediated behaviour

Harvey, D. J., Vuts, J., Hooper, A. M., Finch, P., Woodcock, C. M., Caulfield, J. C., Kadej, M., Smolis, A., Withall, D., Henshall, S., Pickett, J. A. and Birkett, M. A. 2018. Environmentally vulnerable noble chafers exhibit unusual pheromone-mediated behaviour. PLOS ONE. 13 (11), p. e0206526.

Development of pull and push-pull systems for management of Lesser Mealworm, Alphitobius diaperinus, in poultry houses using alarm and aggregation pheromones

Hassemer, M., Borges, M., Withall, D., Pickett, J. A., Laumann, R. A., Birkett, M. A. and Blassioli-Moraes, M. C. 2019. Development of pull and push-pull systems for management of Lesser Mealworm, Alphitobius diaperinus, in poultry houses using alarm and aggregation pheromones. Pest Management Science. 75 (4), pp. 1107-1114.

Influence of constitutive and induced volatiles from mature green coffee berries on the foraging behaviour of female coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curclionidae: Scolytinae)

Blassiolo-Moraes, M. C., Michereff, M. F. F., Magalhaes, D. M., Morals, S. D., Hassemer, M. J., Laumann, R. A., Meneghin, A. M., Birkett, M. A., Withall, D., Medeiros, L. N., Correa, C. M. C. and Borges, M. 2018. Influence of constitutive and induced volatiles from mature green coffee berries on the foraging behaviour of female coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curclionidae: Scolytinae). Arthropod-Plant Interactions.

Identification of volatile compounds involved in host location by Anthonomus grandis (Coleoptera: Curculionidae)

Maghalaes, D. M., Borges, M., Laumann, R. A., Woodcock, C. M., Withall, D., Pickett, J. A., Birkett, M. A. and Blassioli-Moraes, M. C. 2018. Identification of volatile compounds involved in host location by Anthonomus grandis (Coleoptera: Curculionidae). Frontiers in Ecology and Evolution. July (6), p. 98.

(2R,5S)‐Theaspirane Identified as the Kairomone for the Banana Weevil, Cosmopolites sordidus, from Attractive Senesced Leaves of the Host Banana, Musa spp.

Abagale, S. A., Woodcock, C. M., Hooper, A. M., Caulfield, J. C., Withall, D., Chamberlain, K., Acquaah, S. O., Van Emden, H., Braimah, H., Pickett, J. A. and Birkett, M. A. 2018. (2R,5S)‐Theaspirane Identified as the Kairomone for the Banana Weevil, Cosmopolites sordidus, from Attractive Senesced Leaves of the Host Banana, Musa spp. Chemistry-A European Journal. 24 (37), pp. 9217-9219.

Conspecific and Heterogeneric Lacewings Respond to (Z)-4-Tridecene Identified from Chrysopa formosa (Neuroptera: Chrysopidae)

Koczor, S., Szentkiralyi, F., Vuts, J., Caulfield, J. C., Withall, D. M., Pickett, J. A., Birkett, M. A. and Toth, M. 2018. Conspecific and Heterogeneric Lacewings Respond to (Z)-4-Tridecene Identified from Chrysopa formosa (Neuroptera: Chrysopidae). Journal of Chemical Ecology. 44 (2), pp. 137-146.

268 total views of outputs
118 total downloads of outputs
8 views of outputs this month
1 downloads of outputs this month