Complementary protein extraction methods increase the identification of the Park Grass Experiment metaproteome

A - Papers appearing in refereed journals

Quinn, G. A., Abdelhameed, A., Banat, I. M., Berra, D., Doerr,S. H., Dudley, E., Francis, L. W., Gazze, S. A., Hallin, I., Matthews, G. P., Swain, M. T., Whalley, W. R. and Van Keulena, G. 2022. Complementary protein extraction methods increase the identification of the Park Grass Experiment metaproteome. Applied Soil Ecology. 173, p. 104388. https://doi.org/10.1016/j.apsoil.2022.104388

AuthorsQuinn, G. A., Abdelhameed, A., Banat, I. M., Berra, D., Doerr,S. H., Dudley, E., Francis, L. W., Gazze, S. A., Hallin, I., Matthews, G. P., Swain, M. T., Whalley, W. R. and Van Keulena, G.
Abstract

Although the Park Grass Experiment is an important international reference soil for temperate grasslands, it still lacks the direct extraction of its metaproteome. The identification of these proteins can be crucial to our understanding of soil ecology and major biogeochemical processes. However, the extraction of protein from soil is a technically fraught process due to difficulties with co-extraction of humic material and lack of compatible databases to identify proteins. To address these issues, we combined two protein extraction techniques on Park Grass experiment soil, one based on humic acid removal, namely a modified freeze-dry, heat/thaw/phenol/chloroform (HTPC) method and another which co-extracts humic material, namely an established surfactant method. A broad range of proteins were identified by matching the mass spectra of extracted soil proteins against a tailored Park Grass proteome database. These were mainly in the categories of “protein metabolism”, “membrane transport”, “carbohydrate metabolism”, “respiration” “ribosomal and nitrogen cycle” proteins, enabling reconstitution of specific processes in grassland soil. Protein annotation using NCBI and EBI databases inferred that the Park Grass soil is dominated by Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes at phylum level and Bradyrhizobium, Rhizobium, Acidobacteria, Streptomyces and Pseudolabrys at genus level. Further functional enrichment analysis enabled us to connect protein identities to regulatory and signalling networks of key biogeochemical cycles, notably the nitrogen cycle. The newly identified Park Grass metaproteome thus provides a baseline on which future targeted studies of important soil processes and their control can be built.

KeywordsTemperate-grasslands; Soil-Metaproteome; Protein-extraction; Biogeochemical-cycles; Regulation
Year of Publication2022
JournalApplied Soil Ecology
Journal citation173, p. 104388
Digital Object Identifier (DOI)https://doi.org/10.1016/j.apsoil.2022.104388
Open accessPublished as ‘gold’ (paid) open access
FunderBiotechnology and Biological Sciences Research Council
Funder project or codeS2N - Soil to Nutrition [ISPG]
Publisher's version
Output statusPublished
Publication dates
Online21 Jan 2022
Publication process dates
Accepted10 Jan 2022
PublisherElsevier Science Bv
ISSN0929-1393

Permalink - https://repository.rothamsted.ac.uk/item/988x7/complementary-protein-extraction-methods-increase-the-identification-of-the-park-grass-experiment-metaproteome

5 total views
2 total downloads
5 views this month
2 downloads this month
Download files as zip