Weekly weather generation for a nitrogen turnover model

A - Papers appearing in refereed journals

Dailey, A. G., Smith, J. U. and Whitmore, A. P. 2005. Weekly weather generation for a nitrogen turnover model. Nutrient Cycling in Agroecosystems. 73 (2-3), pp. 257-266.

AuthorsDailey, A. G., Smith, J. U. and Whitmore, A. P.
Abstract

Three methods of deriving weather for use in a nitrogen decision support system with a weekly time-step are described and evaluated. The simplest of these is simply the mean (M) of the three weather variables: Rainfall (R), evapotranspiration (ET) and temperature (T). To represent the variability of weather, many sets of generated data are needed but this is not possible with mean values. Two methods of generating rainfall are described: a fully stochastic simulator (FS) and a method based on partitioning the distribution into sections (SM). Temperature, T, and evapotranspiration ET are represented in both generators by sinusoidal functions. The amount of R is modelled as an empirical distribution, rain persistence as a Markov chain. All three means of deriving weather were compared directly with actual weather from the historical record and in use with the SUNDIAL DSS. The mean values of R, ET and T were reproduced satisfactorily (r > 0.99) by both FS and SM, but variability less accurately (r > 0.80 for the standard deviations of T, r > 0.97 for R and ET). The mean values of several components of the nitrogen cycle sim ulated with SUNDIAL were generally reproduced well for both methods of weather generation, but less accurately for mean weather. For leaching, the root mean square errors were 2.6, 2.3 and 11.4 kg/ha for FS, SM and M, respectively. The sectioning method generally gave a poor estimate of variation, which was significantly underestimated for the majority of variables, in the case of leaching by a factor of three. Where variance is important, FS is preferred; weather data generated by this method may be used with confidence for risk assessments of denitrification and crop N uptake.

KeywordsDecision Support System; Nitrogen fertiliser; Stochastic model; Weather generator
Year of Publication2005
JournalNutrient Cycling in Agroecosystems
Journal citation73 (2-3), pp. 257-266
Digital Object Identifier (DOI)doi:10.1007/s10705-005-3031-3
Open accessPublished as non-open access
Funder project or code511
The influence of weather patterns on fertillizer recommendations and risk assessment
Paradigms for modelling environmental systems
Carbon and nitrogen transformations in soils
Output statusPublished
Publication dates
Print01 Nov 2005
PublisherSpringer
ISSN1385-1314

Permalink - https://repository.rothamsted.ac.uk/item/8981x/weekly-weather-generation-for-a-nitrogen-turnover-model

24 total views
0 total downloads
1 views this month
0 downloads this month