Mesocosm experiments to assess the transmission of Pandora neoaphidis within simple and mixed field margins and over the crop-margin interface

A - Papers appearing in refereed journals

Baverstock, J., Torrance, M. T., Clark, S. J. and Pell, J. K. 2012. Mesocosm experiments to assess the transmission of Pandora neoaphidis within simple and mixed field margins and over the crop-margin interface. Journal of Invertebrate Pathology. 110, pp. 102-107. https://doi.org/10.1016/j.jip.2012.02.012

AuthorsBaverstock, J., Torrance, M. T., Clark, S. J. and Pell, J. K.
Abstract

Although considerable research on the development of agri-environment schemes has focussed on the value of managed field margins as reservoirs for arthropod natural enemies, their potential as reservoirs of entomopathogenic fungi has received less attention. Whether field margins that are most beneficial for arthropod natural enemies are the same as those for entomopathogenic fungi is unknown. Here, within glasshouse mesocosms, we assessed the reproductive success of the aphid-specific entomopathogenic fungus Pandora neoaphidis on aphids in a ‘simple margin’ containing one plant species and on the same species of aphid in a ‘mixed margin’ containing seven plant species. These assessments were done in the presence of Aphidius ervi, a hymenopteran parasitoid of aphids regarded as being a key species to conserve in agri-environment schemes in the UK. When only the plants initially infested with aphids were assessed, transmission of P. neoaphidis was significantly greater (p < 0.001) in the mixed margin as was parasitisation by A. ervi (p < 0.05). However, when all of the plants in the mesocosms were assessed, transmission of P. neoaphidis remained greater in the mixed margin (p < 0.05) whereas parasitisation by A. ervi was greater in the simple margin (p < 0.05). This difference may be due to aphid dispersal which was greater in the simple margin thereby benefitting the actively foraging parasitoid whereas clustering of aphids in the mixed margin benefited the passively dispersed fungus. In a second mesocosm experiment, the movement of P. neoaphidis over the crop-margin interface was similar to that of A. ervi despite the fungus only being passively dispersed in contrast to the actively foraging parasitoid. The results presented here indicate that, although the optimal plant composition of field margins may differ for P. neoaphidis and A. ervi, both species can co-exist and reproduce in field margins and will move over the crop-margin interface. Managed field margins that benefit both key arthropod and key microbial enemies have potential for enhancing pest control in associated crops. 

Year of Publication2012
JournalJournal of Invertebrate Pathology
Journal citation110, pp. 102-107
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jip.2012.02.012
Open accessPublished as non-open access
Funder project or codeSEF
Centre for Mathematical and Computational Biology (MCB)
Arable crops ecosystems - habitat diversification, crop management and natural enemies for crop protection and biodiversity: Extension
Bio Nano Consult (Rocre Tenant)
Publication dates
Online03 Mar 2012
Publication process dates
Accepted15 Feb 2012
PublisherElsevier
Academic Press Inc Elsevier Science
ISSN0022-2011

Permalink - https://repository.rothamsted.ac.uk/item/8qq50/mesocosm-experiments-to-assess-the-transmission-of-pandora-neoaphidis-within-simple-and-mixed-field-margins-and-over-the-crop-margin-interface

Restricted files

Publisher's version

Under embargo indefinitely

99 total views
1 total downloads
7 views this month
0 downloads this month