Differential role for trehalose metabolism in salt-stressed maize

A - Papers appearing in refereed journals

Henry, C., Bledsoe, S. W., Griffiths, C. A., Kollman, A., Paul, M. J., Sakr, S. and Lagrimini, L. M. 2015. Differential role for trehalose metabolism in salt-stressed maize. Plant Physiology. 169, pp. 1072-1089. https://doi.org/10.1104/pp.15.00729

AuthorsHenry, C., Bledsoe, S. W., Griffiths, C. A., Kollman, A., Paul, M. J., Sakr, S. and Lagrimini, L. M.
Abstract

Little is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher concentrations of sucrose (Suc) and hexose sugars in leaf, cob, and kernels at silking, pollination, and 3 d after pollination. Citric acid cycle intermediates were lower in salt-treated tissues, indicating that these sugars were unavailable for use in respiration. The sugar-signaling metabolite trehalose-6-phosphate was elevated in leaf, cob, and kernels at silking as a consequence of salt treatment but decreased thereafter even as Suc levels continued to rise. Interestingly, the transcripts of trehalose pathway genes were most affected by salt treatment in leaf tissue. On the other hand, transcripts of the SUCROSE NONFERMENTING-RELATED KINASE1 (SnRK1) marker genes were most affected in reproductive tissue. Overall, both source and sink strength are reduced by salt, and the data indicate that trehalose-6-phosphate and SnRK1 may have different roles in source and sink tissues. Kernel abortion resulting from osmotic stress is not from a lack of carbohydrate reserves but from the inability to utilize these energy reserves.

Year of Publication2015
JournalPlant Physiology
Journal citation169, pp. 1072-1089
Digital Object Identifier (DOI)https://doi.org/10.1104/pp.15.00729
Open accessPublished as ‘gold’ (paid) open access
FunderSyngenta UK
Funder project or codeWheat
Molecular definition of Trehalose 6-phosphate mediated yield improvement
Publisher's version
Copyright license
CC BY
Output statusPublished
Publication dates
Online12 Aug 2015
Publication process dates
Accepted07 Aug 2015
ISSN0032-0889
PublisherAmerican Society of Plant Biologists (ASPB)

Permalink - https://repository.rothamsted.ac.uk/item/8v0w6/differential-role-for-trehalose-metabolism-in-salt-stressed-maize

98 total views
34 total downloads
2 views this month
1 downloads this month
Download files as zip