Microbial Biomass Responses to Soil Drying-Rewetting and Phosphorus Leaching

A - Papers appearing in refereed journals

Khan, S. U., Hooda, P. S., Blackwell, M. S. A. and Busquets, R. 2019. Microbial Biomass Responses to Soil Drying-Rewetting and Phosphorus Leaching. Frontiers in Environmental Science. 7, p. 00133.

AuthorsKhan, S. U., Hooda, P. S., Blackwell, M. S. A. and Busquets, R.
Abstract

Soil drying-rewetting is known to enhance soil phosphorus leaching, which in part is due to osmotic shock and lysis of microbial cells upon rewetting. However, it is not entirely clear how this may be influenced by the intensity and duration of soil drying. We hypothesized that the intensity and duration of soil drying play important roles in determining the extent of dissolved reactive phosphorus (DRP) leaching resulting from microbial biomass mortality. To test this hypothesis soil sub-samples of a loamy grassland soil were dried (30 or 40°C for 2 or 14-days), rewetted, and the leachate was analyzed for DRP. Soil drying at 30°C for 2 and 14-days resulted in leachate DRP concentrations which were 71 and 271%, respectively, higher than those in leachate from a control moist counterpart. Relatively greater DRP leaching losses occurred from the soil dried at 40°C for 2 and 14-days (143 and 300%, respectively). To determine the contribution of the microbial biomass to the DRP in leachate, soil sub-samples were fumigated with chloroform either before or after drying (30 or 40°C for 2 or 14-days). All soil treatments were then either leached with water and analyzed for DRP or extracted with 0.5 M sodium bicarbonate solution and analyzed for microbial biomass phosphorus. Fumigating soil samples before or after drying reduced microbial biomass phosphorus. However, the effect of chloroform fumigation was more pronounced in terms of microbial biomass reduction in the DF (drying followed by fumigation) treatment. Moreover, results revealed that in the DF treatment, soils dried at 30°C for 2-days and 14-days had 22 and 13%, respectively, more microbial biomass phosphorus than their counterparts dried at 40°C for 2 and 14-days, respectively. These results suggest that soil drying at higher intensity and for prolonged periods significantly (p < 0.05) affect microbial biomass and subsequently increases soil phosphorus leaching following rewetting, due to enhanced contributions from the microbial biomass. These findings, however, need to be verified over a range of soil types under natural field conditions to better assess soil drying-rewetting effects on nutrient leaching.

KeywordsMicrobial biomass; Soil; Climate change; Dry-rewetting; Phosphorus leaching; Phosphorus; Nutrient leaching
Year of Publication2019
JournalFrontiers in Environmental Science
Journal citation7, p. 00133
Digital Object Identifier (DOI)doi:10.3389/fenvs.2019.00133
Web address (URL)https://www.frontiersin.org/article/10.3389/fenvs.2019.00133
Open accessPublished as ‘gold’ (paid) open access
Publisher's version
Copyright license
CC BY
Output statusPublished
Publication dates
Online12 Sep 2019
Publication process dates
Accepted28 Aug 2019
ISSN2296-665X
PublisherFrontiers Media SA

Permalink - https://repository.rothamsted.ac.uk/item/95zz5/microbial-biomass-responses-to-soil-drying-rewetting-and-phosphorus-leaching

25 total views
10 total downloads
3 views this month
0 downloads this month
Download files as zip