UK Ammonia Emissions Estimated With Satellite Observations and GEOS-Chem

A - Papers appearing in refereed journals

Marais, E. A., Pandey, A. K., Van Damme, M., Clarisse, L., Coheur, P-F., Shephard, M. W., Cady-Pereira, K. E., Misselbrook, T. H., Zhu, L., Luo, G. and Yu, F. 2021. UK Ammonia Emissions Estimated With Satellite Observations and GEOS-Chem. Journal Of Geophysical Research-Atmospheres. 126 (18), p. e2021JD035237. https://doi.org/10.1029/2021JD035237

AuthorsMarais, E. A., Pandey, A. K., Van Damme, M., Clarisse, L., Coheur, P-F., Shephard, M. W., Cady-Pereira, K. E., Misselbrook, T. H., Zhu, L., Luo, G. and Yu, F.
Abstract

Agricultural emissions of ammonia (NH3) impact air quality, human health, and the vitality of aquatic and terrestrial ecosystems. In the UK, there are few direct policies regulating anthropogenic NH3 emissions and development of sustainable mitigation measures necessitates reliable emissions estimates. Here, we use observations of column densities of NH3 from two space-based sensors (IASI and CrIS) with the GEOS-Chem model to derive top-down NH3 emissions for the UK at fine spatial (similar to 10 km) and time (monthly) scales. We focus on March-September when there is adequate spectral signal to reliably retrieve NH3. We estimate total emissions of 272 Gg from IASI and 389 Gg from CrIS. Bottom-up emissions are 27% less than IASI and 49% less than CrIS. There are also differences in seasonality. Top-down and bottom-up emissions agree on a spring April peak due to fertilizer and manure application, but there is also a comparable summer July peak in the top-down emissions that is not in the bottom-up emissions and appears to be associated with dairy cattle farming. We estimate relative errors in the top-down emissions of 11%-36% for IASI and 9%-27% for CrIS, dominated by column density retrieval errors. The bottom-up versus top-down emissions discrepancies estimated in this work impact model predictions of the environmental damage caused by NH3 emissions and warrant further investigation.

KeywordsAmmonia; Emissions; Earth observations; GEOS-Chem; Agriculture; UK
Year of Publication2021
JournalJournal Of Geophysical Research-Atmospheres
Journal citation126 (18), p. e2021JD035237
Digital Object Identifier (DOI)https://doi.org/10.1029/2021JD035237
Open accessPublished as ‘gold’ (paid) open access
FunderDepartment of Environment, Food and Rural Affairs
Publisher's version
Output statusPublished
Publication dates
Online31 Aug 2021
Publication process dates
Accepted25 Aug 2021
PublisherAmerican Geophysical Union
ISSN2169-897X

Permalink - https://repository.rothamsted.ac.uk/item/986y4/uk-ammonia-emissions-estimated-with-satellite-observations-and-geos-chem

143 total views
88 total downloads
1 views this month
0 downloads this month
Download files as zip