Effects of changes in climatic means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe

A - Papers appearing in refereed journals

Bracho-Mujica, G., Rotter, R. P., Haakana, M., Palosuo, T., Fronzek, S., Asseng, S., Yi, C., Ewert, F., Gaiser, T., Kassie, B., Paff, K., Rezaei, E. E., Rodriguez, A., Ruiz-Ramos, M., Srivastava, A. K., Stratonovitch, P., Tao, F. and Semenov, M. A. 2024. Effects of changes in climatic means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe. Agricultural and Forest Meteorology. 364 (March), p. 109887. https://doi.org/10.1016/j.agrformet.2024.109887

AuthorsBracho-Mujica, G., Rotter, R. P., Haakana, M., Palosuo, T., Fronzek, S., Asseng, S., Yi, C., Ewert, F., Gaiser, T., Kassie, B., Paff, K., Rezaei, E. E., Rodriguez, A., Ruiz-Ramos, M., Srivastava, A. K., Stratonovitch, P., Tao, F. and Semenov, M. A.
Abstract

To address the rising global food demand in a changing climate, yield gaps (YG), the difference between potential yields under irrigated (YP) or rainfed conditions (YWL) and actual farmers’ yields (Ya), must be significantly narrowed whilst raising potential yields. Here, we examined the likely impacts of climate change (including changes in climatic variability) and improvements in agricultural technologies on crop yields and yield gaps. Eight rigorously tested crop simulation models were calibrated for wheat and maize and run at 10 different sites around the world. Simulations were performed to estimate YP, YWL and yields achievable under three locally defined technology packages: TP0 represents average farmer's practice, while TP1 and TP2 are increasingly advanced technologies. Simulations were run for the baseline (1981–2010) and twelve future climate scenarios for 2050, representing changes in the means of climate variables and in the variability of daily temperature and dry/wet spell durations. Our basic hypotheses were that (H1) mean climate changes combined with increased weather variability lead to more negative yield impacts than mean climate changes alone, and (H2) advanced technologies would serve as effective adaptations under future climatic conditions. We found that crop responses were dependent on site characteristics, climate scenarios and adopted technologies. Our findings did not support H1. As for H2, the improved technology packages increased wheat and maize yields at all sites, but yield gap reduction varied substantially among sites. Future studies should consider a broader range of climate scenarios and methods for analysing potential shifts in climate variability. Moreover, it is recommended to co-create and evaluate climate zone-specific climate-smart crop production technologies in interaction with a wide range of local stakeholders.

KeywordsAdaptation; Climate changes impacts; Crop modelling; Food security; Technology change; Yield gap
Year of Publication2024
JournalAgricultural and Forest Meteorology
Journal citation364 (March), p. 109887
Digital Object Identifier (DOI)https://doi.org/10.1016/j.agrformet.2024.109887
Open accessPublished as non-open access
FunderBiotechnology and Biological Sciences Research Council
Funder project or codeDelivering Sustainable Wheat
Output statusPublished
Publication dates
Online16 Jan 2024
Publication process dates
Accepted04 Jan 2024
ISSN0168-1923
PublisherElsevier

Permalink - https://repository.rothamsted.ac.uk/item/98z8q/effects-of-changes-in-climatic-means-variability-and-agro-technologies-on-future-wheat-and-maize-yields-at-10-sites-across-the-globe

Restricted files

Publisher's version

Under embargo indefinitely

109 total views
0 total downloads
9 views this month
0 downloads this month