The representation of sediment source group tracer distributions in Monte Carlo uncertainty routines for fingerprinting: An analysis of accuracy and precision using data for four contrasting catchments

A - Papers appearing in refereed journals

Pulley, S., Collins, A. L. and Laceby, J. P. 2020. The representation of sediment source group tracer distributions in Monte Carlo uncertainty routines for fingerprinting: An analysis of accuracy and precision using data for four contrasting catchments. Hydrological Processes. pp. 1-20.

AuthorsPulley, S., Collins, A. L. and Laceby, J. P.
Abstract

Previous studies comparing sediment fingerprinting un‐mixing models report large differences in their accuracy. The representation of tracer concentrations in source groups is perhaps the largest difference between published studies. However, the importance of decisions concerning the representation of tracer distributions has not been explored explicitly. Accordingly, potential sediment sources in four contrasting catchments were intensively sampled. Virtual sample mixtures were formed using between 10 and 100% of the retrieved samples to simulate sediment mobilization and delivery from subsections of each catchment. Source apportionment used models with a transformed multivariate normal distribution, normal distribution, 25th–75th percentile distribution and a distribution replicating the retrieved source samples. The accuracy and precision of model results were quantified and the reasons for differences were investigated. The 25th–75th percentile distribution produced the lowest mean inaccuracy (8.8%) and imprecision (8.5%), with the Sample Based distribution being next best (11.5%; 9.3%). The transformed multivariate (16.9%; 17.3%) and untransformed normal distributions (16.3%; 20.8%) performed poorly. When only a small proportion of the source samples formed the virtual mixtures, accuracy decreased with the 25th–75th percentile and Sample Based distributions so that when <20% of source samples were used, the actual mixture composition infrequently fell outside of the range of uncertainty shown in un‐mixing model outputs. Poor performance was due to combined random Monte Carlo numbers generated for all tracers not being viable for the retrieved source samples. Trialling the use of a 25th–75th percentile distribution alongside alternatives may result in significant improvements in both accuracy and precision of fingerprinting estimates, evaluated using virtual mixtures. Caution should be exercised when using a normal type distribution, without exploration of alternatives, as un‐mixing model performance may be unacceptably poor. The representation of source group tracer concentrations is perhaps the largest difference between sediment fingerprinting un‐mixing models. Despite this, the effects of different distributions on model accuracy have not been explored explicitly. ‘This study compared a transformed multivariate normal, a normal and a 25th–75th percentile distribution as well as a distribution replicating the retrieved source samples. The 25th–75th percentile distribution produced the lowest mean inaccuracy (8.8%), with the Sample Based being next best (11.5%). The transformed multivariate (16.9%) and untransformed normal distributions (16.3%) performed poorly.

Year of Publication2020
JournalHydrological Processes
Journal citationpp. 1-20
Digital Object Identifier (DOI)doi:10.1002/hyp.13736
Web address (URL)https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.13736
Open accessPublished as ‘gold’ (paid) open access
FunderBiotechnology and Biological Sciences Research Council
Funder project or codeS2N - Soil to Nutrition - Work package 3 (WP3) - Sustainable intensification - optimisation at multiple scales
Publisher's version
Output statusPublished
Publication process dates
Accepted20 Feb 2020
PublisherWiley
ISSN0885-6087

Permalink - https://repository.rothamsted.ac.uk/item/977x9/the-representation-of-sediment-source-group-tracer-distributions-in-monte-carlo-uncertainty-routines-for-fingerprinting-an-analysis-of-accuracy-and-precision-using-data-for-four-contrasting-catchments

10 total views
4 total downloads
1 views this month
2 downloads this month
Download files as zip