A - Papers appearing in refereed journals
Arabameri, A., Saha, S., Roy, J., Tiefenbacher, J. P., Cerda, A., Biggs, T., Pradhan, B., Ngo, P. T. T. and Collins, A. L. 2020. A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility . Science of the Total Environment. 726, p. 138595. https://doi.org/10.1016/j.scitotenv.2020.138595
Authors | Arabameri, A., Saha, S., Roy, J., Tiefenbacher, J. P., Cerda, A., Biggs, T., Pradhan, B., Ngo, P. T. T. and Collins, A. L. |
---|---|
Abstract | Land subsidence (LS) is a significant problemthat can cause loss of life, damage property, and disrupt local economies. |
Keywords | Ensemble method; K-fold cross-validation (CV); Land-subsidence susceptibility; Semnan Plain |
Year of Publication | 2020 |
Journal | Science of the Total Environment |
Journal citation | 726, p. 138595 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.scitotenv.2020.138595 |
Open access | Published as non-open access |
Funder | Biotechnology and Biological Sciences Research Council |
Funder project or code | S2N - Soil to Nutrition - Work package 3 (WP3) - Sustainable intensification - optimisation at multiple scales |
Output status | Published |
Publication dates | |
Online | 12 Apr 2020 |
Publication process dates | |
Accepted | 07 Apr 2020 |
Publisher | Elsevier Science Bv |
ISSN | 0048-9697 |
Permalink - https://repository.rothamsted.ac.uk/item/97z41/a-novel-ensemble-computational-intelligence-approach-for-the-spatial-prediction-of-land-subsidence-susceptibility
Publisher's version